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Abstract—We investigate side-channel attacks on Falcon, a
NIST Round-3 finalist for post-quantum digital signature stan-
dardization. Given its importance in post-quantum cryptography,
analyzing Falcon’s side-channel vulnerabilities is critical.

Fouque and al.[1] identified Falcon’s subroutine discrete Gaus-
sian sampling over integers as a potential vulnerability.

[GMRR22] adresses this concern in the second attack they
propose but in their first attack, they build on the attack given
by [KA21] exploiting electromagnetic leakage from floating-point
multiplications in the Fast Fourier Transform to recover the
secret signing key. [GMRR22] improves the attack by halving
the number of traces and reducing complexity. In the second
attack, [GMRR22] perform a simple power analysis during the
signature execution to provide the exact value of the output of a
subroutine called the base sampler. This intermediate value does
not directly lead to the secret. Therefore [GMRR22] had to adapt
the so-called hidden parallelepiped attack initially introduced by
Nguyen and Regev in Eurocrypt 2006 to extract it.

I. INTRODUCTION

Falcon stands for Fast Fourier lattice-based compact signa-
tures over NTRU. Its main advantage is compactness. Among
post-quantum signature schemes, none are known to achieve
both a public key and signature size as small as that of Falcon.

Falcon is built on the GPV framework, using NTRU lat-
tices and Fast Fourier sampling, making it a highly efficient
yet complex hash-and-sign scheme. This complexity comes
through two features: the use of floating point arithmetics and
the need for Gaussian sampling. The NIST emphasized the
need for side-channel analysis on the finalists. [GMRR22][2]]
aimed at doing this analysis in the case of Falcon. [KA21][3]
performed the first concrete power attack threatening Falcon
implementations.

This attack targets a subroutine of the algorithm and fo-
cuses on the recovery of values encoded in floating points.
[GMRR22] improved this attack and provided the first attack
against Gaussian Sampler.

II. BACKGROUND

In this report, we will need the following concepts.
Floating-point numbers in double precision i.e. encoded
over 64 bits:
(71)8 . 2871023 -m

with s the sign bit, e the exponent encoded in 11 bits and m
the mantissa encoded in 52 bits.

Concerning side-channel attacks, we assume to be in
the Threat model namely the adversary has physical access
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to the device and captures EM and power measurements
while the key-dependent computations are carried out.

A Simple power analysis (SPA) is a side-channel attack
where the power usage tells what kind of operation is
performed. In algorithms, the metric for the cost is time and
space complexity whereas in Power Analysis the metric is
the number of traces. An important side-channel attack is
Correlation power analysis (CPA) against signature scheme.
It allows the adversary to find a secret key that is stored on a
victim device. There are 4 steps to a CPA attack:

o Write down a model for the victim’s power consumption.
This model will look at one specific point in the signature
algorithm. A model that we will use in this report is the
Hamming weight of a string which is the number of
symbols that are different from the zero string.

o Get the victim to sign several different plaintexts. Record
a trace of the victim’s power consumption during each
of these signatures. Attack small parts (subkeys) of the
secret key as follows. Consider every possible option
for the subkey. For each guess and each trace, use the
known plaintext and the guessed subkey to calculate the
power consumption according to our model. Calculate the
(Pearson) correlation coefficient between the modeled and
actual power consumption. Do this for every data point
in the traces. Decide which subkey guess correlates best
to the measured traces.

o Put together the best subkey guesses to obtain the full
secret key.

Finally, we need to recall Falcon signature scheme. First we
define Key generation in Falcon. An NTRU lattice is the lattice

o : S 2X2 o _Zy[7]
spanned by B := 0 ¢ viewed in R-*~* with R := wr1)-
L h (9 —f
But note that <0 q> and B := ( a _ F) span the same

lattice.

» KeyGEN Falcon: Draw f, g € R with small coefficients,
compute F,G € R satisfying NTRU equation: fG —
gF =q mod (z" +1). h=gf~! mod ¢ is the public
key and f, g, F, G are the secret keys. Private Basis B €
R21*2n_ Pyblic Basis A € R?" seenas A:= (1 h*) €
R? with h* := h(z71).

We are in position now to define Falcon Signature algorithm.



Algorithm 1 FALCON.SIGN(m, sk)

Input: A message m, a secret key sk = (E, T)
Output: A signature sig

r & {0,1}32° uniformly
ceHashToPonlt( [l m,q,n) >ceR
— (¢,0)-B~ > * pre-image computation
d0
vV ffSampllng(t T)
§—(t—v)-B
while [|s]|? > [2.42 - n - o?]
return sig := (r,s)

> e trapdoor sampler

A A R ol e

% “4/q-log (4n (1 +232. \/n/4>).

The verification is defined as follows: if ||s|? < |2.42-n -

o?], then the signature is accepted as valid. Otherwise, it is
rejected. In order to tackle Section 4, we recall the definition of
a Discrete Gaussian distribution and the Hidden Parallelepiped
Problem. The Hidden Parallelepiped Problem (HPP): Let
B := (bg,...,bn_1) be n linearly independent vectors and
let P(B) = {>/", @ibi, z; € [—1,1]}, the parallelepiped
spanned by B
Given a sequence of poly(n) independent samples drawn
uniformly at random in P(B), find a good approximation of
B. Gaussian Distribution: For 0 € R with ¢ > 0 and any
c € R"”, we call the Gaussian function centered at ¢ of stan-
dard deviation o the function defined over R™ as p, (x) :=

where o :=

2
exp (7@) . We call discrete Gaussian distribution over

A of standard deviation o and center c the distribution defined

forall z € A by Dp sc(z) = #}Z)(x).
xe o,Cc

III. IMPROVEMENT OF PRE-IMAGE ATTACK

First we recall the attack given by [KA21], then we ex-
plain the two main improvements given by [GMRR22]. The
attack works as follows. We measure the voltage power of
victim’s device with respect to time during the execution
of Falcon Sign to N messages. This yields N transcripts
(c1,81),-..,(cn,sN) where ¢;’s are the digests and N traces
Py, ..., Py. We focus on the execution of Step 3 of Falcon
Sign (Prelmage computation) cf Figure I namely t <+ (¢,0)-
B~'.In (¢,0)-B~! = (&-F, ¢-f), we focus on ¢ f. We want to
recover the secret keys, namely f, g, F\, G. But Key recovery
reduces to recover f (actually f thanks to InvFFT) from ¢- f .
Indeed, h = g- f~! mod q allows us to recover g and given
f,g we recover F, G via NTRU equation. Let’s denote by f|i]
the i-th coefficient of f and ¢;[i] the i-th coefﬁ01ent of é. As
coefficients of f are real (since f € R := (w,, +1)) by property

of FFT one has f[i] = f[n—1—i], fori =0,...,2 5, where
 denotes the complex conjugate. Hence, it is enough to find
only the first 5 coefficients of f .

In order to do so, we apply Correlation Power
Analysis as follows. We compute for each trace the
following Hamming weights where for a fixed time
t, we denote by Pi[t],...,Pn[t] the measurements at

time t that yield intermediate values in the computation
of Cz[j] . flj] for some j = 0,...,5 and any
1 = 1,...,N and denote by HW the Hamming weight.
P : HW(Re(éj [i]) - Re(f[i])) for j =1,...,N. Then, as é is
known we make a guess on Re( f [i]) so that the N correlations

(HW(Re(cl[]) guess), HW (Re(clﬂ) Re(f[]))) Yo

N (HW (Re(én[i]) - guess) , HW (Re(éN[i]), Re( f[i])))
are maximized.

If N is large, i.e. we have many traces, then guess will
most likely be Re(f[i]) as desired. But if N is small, there
may be many possible values of guess which maximize
the N above correlations. But in that case, [GMRR22] had
the idea to use the redundancy of complex multiplication
as follows. Write ¢;[i] = Re(¢;[i]) + iIm(é;[é]) and
fli] = Re(f[i]) + iIm(f[i]) which are floating-points. We
have the following complex multiplication

&li] - flil = (Re(&[i]) + i Im(&; ) - (Re
= Re(¢;[i])Re(f[i]) -
+i( o+ Im(¢; i) Re( f[i]))

From this, we extract: Re(¢;[i]) - Re(f[i]),

, . But the first two

multiplications allow us to recover Re(f[i]) and the second
two to recover Im(f[i]) instead of using four multiplications
to recover the real part and four to recover the imaginary
part. We explain below how precisely the first two lead to
recovering Re(f[i]). Instead of considering Py[t], ..., Py|t]
for a fixed time index ¢, we consider the concatenated
traces Pi[t] U Pi[t'],..., Pn[t] U Py[t'] for ¢ # t, where
we compute for P/: HW((Im(é[i])) - Im(f[i])),..., for
P}: HW(Im(cn[i]) - Im( f [i])). Then, it is unlikely that a
guess different than Re(f[i]) maximizes the following 2N

Cojflzg);lvs(Re(alm).guess),HW (Re( i), Re(fi]) ))
7))

N (HW (Re(énli]) - guess) , HW (Re(é i]),
and py (HW (Im(@[i]) - guess), HW (Im(@[i]), Re(f[i)) )
v (HW (tmew(i]) - guess) , HW (m(ew i), Re(f(i)) )
In a similar way, the adversary guesses Im(f[i]). At the
end, we recovered only the real and the imaginary part of
one coefficient namely f[i] out of 5 coefficients of f. But if
we consider FALCON-512 (n = 512), we need % = 256
for the real part and another 3 = 256 for the imaginary
part so 512 coefficients to recover. We explained the attack
given by [KA21] and how [GMRR22] were able to halve
the number of traces. Now, we explain their second main
improvement in this attack: partial knowledge of f leads to
Key Recovery. [KA21] noted that during the multiplication
c][]~f[]f0r]€{0 .,n} and i € {0,..., 5} the sign,
exponent and mantissa are computed separately (signs are
xored, exponents added and mantissa multiplied) and so can
be retrieved separately. But [KA21] needed the whole mantissa

(f[i)) + i Im(f[i]))

Im(&([i]) - Re(fli]),
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Figure 1: An example EM measurement trace from [KA21]
showing the related mantissa, exponent, and sign computa-
tions.

in order to recover f . [GMRR22] showed by experiments that
recovering only the 8 MSB’s of the mantissa is enough. In-
deed, [GMRR22] experimented their attacks on both simulated
traces and real acquisitions. Their simulated traces were gener-
ated using the ELMO simulator. The actual power traces were
generated from a ChipWhisperer Lite with STM32F3 target.
In the ELMO setup, 2000 traces were sufficient to recover
the full key, whereas the ChipWhisperer setup required 5000
traces. Finally, [GMRR22] demonstrated through experiments
that the probability of recovering a single intermediate value
using all multiplication patterns—across 2000 traces with data
consisting of 10 x 16 coefficients is approximately 0.9. This
significantly improves upon the result from [KA21], which
achieves a success probability of only 0.5.

IV. UNRAVELLING THE HPP WITH SIDE-CHANNEL
INFORMATION

[GMRR22] attacked Falcon’s Gaussian trapdoor sampler,
more precisely the BaseSampler which led to a key re-
covery. The attack is structured in three parts. The first
step consists of applying a simple power analysis on the
BaseSampler to determine whether z; € {0,1} or not.
In the second step, the paper leverages this knowledge by
applying an HPP solver to filtered sets of signatures with
z; € {0,1} to obtain an approximation of the private key.
Finally, the attack recovers the key by performing a lattice
reduction.

A. SPA on the BaseSampler

The BaseSampler is a key component of FALCON’s
implementation. In fact, Sampler?Z calls it to generate ran-
dom integers following a half discrete Gaussian distribution
centered at 0 and of fixed standard deviation o,,,, (often
1.8205 in practice). BaseSampler is constant-time and
makes use of a reverse cumulative distribution table (RCDT)
as presented in Algorithm 2. However, table-based samplers
like BaseSampler are vulnerable to Simple Power Analysis.
In our situation, the comparison v < RCDT[¢] |at line 4 is
implemented with 3 consecutive 24-bit integer subtractions

Falcon.Sign }—)‘ ffSampling }—)| SamplerZ l—){ BaseSampler

s ~ D(c,0+A(B),0.0 2~ Dgorp 2t ~ Dyt g0

Figure 2: Signature’s flowchart

and the result is stored in a 32-bit register. Upon underflows
(i.e., when the subtraction’s result is negative), the 8 most
significant bits are set to 1, thus increasing the Hamming
weight by 8 and the power consumption. Therefore, it’s
possible to distinguish on a trace whether the variable zT has
been incremented or not. This side-channel attack has shown
great results as 100% of the signatures on the ELMO simulator
and 94.2% of the signatures on a ChipWhisperer were well
correctly classified, thus making this attack feasible.

To perform the next step of the attack, only samples z+ = 0
are relevant, and we assume that the samples are correctly
computed after this step. Furthermore, a random sign will be
generated after the BaseSampler, thus z; € {0,1}. Hence,
the attack consider these two values.

Algorithm 2 BaseSampler

Output: An integer z* ~ Dy+ ,
u < UniformBits(72)
2T« 0
for ¢ <~ 0 to 17 do

2t 2zt 4+ [[u < RCDTYi]]]
end for
return 2"

AN A

B. Applying the HPP & Recovering the key

Once we know z;, the next step consists in solving the
Hidden Parallelepiped Problem and apply the HPP solver
proposed in [4]. FALCON’s signatures are generated using the
ffSampling algorithm, which works analogously to Klein-
GPV algorithm. The latter takes a target vector t,, and a binary
tree T representing the GSO of the private basis as input and
produces a vector v ~ D, 04 A(B),0,0-

The Klein-GPV [3] starts with v, < 0 and fort =n—1,...,0:

1) a; < (ti, ) /[[bi” -

2) Pick z; ~ Dz 5/ 4, |2, With o’ := o/||b;]|, and let k;
|z:] + 2
3) Let t; < tit1 — k;b; and v; + Vit1 + k;b;
At the end, the algorithm returns vg. As indicated in line 2
of the algorithm, the variable z; is as a random perturbation,
and hence does not lead to any information on the private key.
Furthermore, we have:

e 2t =0~ 2 €{0,1} ~y; € (-1,1] = s P(B)

in order to apply HPP solver.

e 2t =0~ 2z €{0,1} since in SamplerZ implementation

([0, z; < b+ (2-b—1)zT, for b = 0 or 1 with equal
probability.


bs:comparison

o z; € {0,1} ~ y; € (—1,1] since s :=
i = (t,bi)/|[bi]|*:

(t —v) - B,

s = Z Yi -b; where Yi = 2z — T + |24
1€[n]

« but the distribution of y; is not uniform over (—1, 1] ~~
we cannot directly apply the HPP solver.

Nevertheless, the knowledge of z; € {0,1}, removes the
probabilistic part of the sampling. By applying this constraint
to all the coefficients and filtering all the generated signatures,
it will disclose the parallelepiped, thus allowing us to apply an
HPP solver. However, one can not assume z; to be zero for all
1 =0,...,n because n is large (i.e., n € {512,1024}). One
can only assume z; = 0 for some ¢ = 0, ..., n. This will not
fully disclose a parallelepiped but one direction is preserved.
This is where the deformed variant of the HPP becomes rele-
vant [6]. Applying the HPP solver on partial perturbation (i.e.,
indices where z; € {0,1}) returns a correct approximation for
these indices. Therefore, we obtain (¢’,—f’) , which is an
approximation of bg = (g, —f).

Finally, the last steps consist in recovering the exact private
key from the approximation (g’, —f’) we obtained previously.
As such, there are two options. First, we can perform a mere
rounding but this requires a lot of signatures. In fact, with
5 millions signatures, we have a high probability (> 0.99) to
have an absolute error less than 0.5 on each coefficient. On the
other hand, we can use a Leaky LWE / NTRU estimator tool
that will solve the problem with less signatures measurements.
However, it requires more computation time and work as it is
a trade-off. With 1 million signatures, it needs ~ 1000 hours
to obtain the result, whereas with 1.5 million, the computation
time starts to be reasonable (~ 24hours) for such an attack.

C. Countermeasure

Finally, the paper proposes one small countermeasure to
their attack: The entry point of the attack was the vulnerabil-
ity of the BaseSampler, especially the comparison u <
RCDTJ[?], when it underflows on the last subtraction. The
author propose to replace that last subtraction by an addition
as follows:

Algorithm 3 Countermeasure on the last subtraction

Input: the 24 MSB of RC'DTi] and %, and ¢ the results of
the two previous comparison

Output: 1 if w < RCDTYi], 0 otherwise.
I: b+ Oxffffff

2: b+ b—u+ RCDT[i]+c
3: return b > 24

In fact, when RC' DT[i]+c > @, b will overflow, thus setting
the 25th bits to 1 and the rest to 0, and this will return 0. This
simple mitigation reduces the Hamming weight by a factor of
8, and makes it harder to detect the result of the comparison.
However, this offers only a weak security assurance and a
provable masking implementation would be better.

V. RELATED WORK AND IMPROVEMENTS

[CC24][7] provided the first masking floating-point mul-
tiplication and addition which protects Falcon’s pre-image
computation against the attack of [KA21]. In response to
the second attack presented by [GMRR22], Lin and al.[§]]
proposed effective and easy-to-implement countermeasures
against leakages to protect Falcon’s integer Gaussian sampler.

VI. CONCLUSION

The attack on preimage computation is interesting for any-
one looking to perform SCA on polynomial multiplication on
floating points. [GMRR22][2] showed that a partial knowledge
of FFT of the secret key leads to a key recovery. Also,
the authors halved the number of required traces by using
redundancy of complex multiplication. As sign, exponent and
mantissa can be retrieved separately in the multiplication, it

reduces adversary’s exhaustive search on guessing Re(f[i])
from 264 possibilities to "only" 2 + 28 + 2! possibilities.
On the other hand, the attack on BaseSampler worked
since uw < RCDTTYi] is a 72 bits substractions which makes
it hard to perform on a device with only 32-bit registers.
But Falcon allows to do three 24 bits substractions which
leads to a side-channel attack which works by noting when
2T is incremented. Keeping track on the calls by SamplerZ
and ffSampling, this leads to a way to apply HPP solver of
[NRO6][4]] and [ND12][6] in order to recover the key.
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